basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL
 SENIOR CERTIFICATE

GRADE 12

LIFE SCIENCES P1

NOVEMBER 2010

FINAL MEMORANDUM

MARKS: 150

This memorandum consists of 12 pages.

PRINCIPLES RELATED TO MARKING LIFE SCIENCES 2010

1. If more information than marks allocated is given

Stop marking when maximum marks is reached and put a wavy line and 'max' in the right hand margin.
2. If, for example, three reasons are required and five are given Mark the first three irrespective of whether all or some are correct/incorrect.
3. If whole process is given when only part of it is required Read all and credit relevant part.
4. If comparisons are asked for and descriptions are given Accept if differences/similarities are clear.
5. If tabulation is required but paragraphs are given Candidates will lose marks for not tabulating.
6. If diagrams are given with annotations when descriptions are required Candidates will lose marks.
7. If flow charts are given instead of descriptions Candidates will lose marks.
8. If sequence is muddled and links do not make sense

Where sequence and links are correct, credit. Where sequence and links is incorrect, do not credit. If sequence and links becomes correct again, resume credit.
9. Non-recognized abbreviations

Accept if first defined in answer. If not defined, do not credit the unrecognised abbreviation but credit the rest of answer if correct.
10. Wrong numbering

If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable. Indicate that the candidate's numbering is wrong.
11. If language used changes the intended meaning

Do not accept.
12. Spelling errors

If recognizable accept provided it does not mean something else in Life Sciences or if it is out of context.
13. If common names given in terminology

Accept, provided it was accepted at the National memo discussion meeting.
14. If only letter is asked for and only name is given (and vice versa) No credit.
15. If units are not given in measurements

Memorandum will allocate marks for units separately, except where it is already given in the question.
16. Be sensitive to the sense of an answer, which may be stated in a different way.
17. Caption

Credit will be given for captions to all illustrations (diagrams, graphs, tables, etc.) except where it is already given in the question.
18. Code-switching of official languages (terms and concepts)

A single word or two that appears in any official language other than the learners' assessment language used to the greatest extent in his/her answers should be credited, if it is correct. A marker that is proficient in the relevant official language should be consulted. This is applicable to all official languages.
19. No changes must be made to the marking memoranda. In exceptional cases, the Provincial Internal Moderator will consult with the National Internal Moderator (and the External moderators if necessary).
20. Only memoranda bearing the signatures of the National Internal Moderator and the UMALUSI moderators and distributed by the National Department of Basic Education via the Provinces must be used in the training of markers and in the marking.

SECTION A

QUESTION 1

1.1	1.1.1	$C \checkmark \checkmark$
	1.1.2	$C \checkmark \checkmark$
	1.1.3	B $\checkmark \checkmark$
	1.1.4	$D \checkmark \checkmark$
	1.1.5	A $\checkmark \checkmark$

$$
\begin{equation*}
(5 \times 2) \tag{10}
\end{equation*}
$$

1.2 1.2.1 Phenotype \checkmark
1.2.2 Cancer \checkmark
1.2.3 Chromatids \checkmark /daughter chromosomes
1.2.4 Gametogenesis \checkmark
1.2.5 Homologous $\checkmark /$ bivalent/tetrad/homologues
1.2.6 Replication \checkmark
1.2.7 Haemophilia \checkmark
1.3 1.3.1 B \checkmark
1.3.2 G \checkmark
1.3.3 A \checkmark
1.3.4 $\mathrm{F} \checkmark$
1.3.5 E \checkmark
1.4 1.4.1 (a) $\quad \mathrm{B} \checkmark$
(b) $b \checkmark$
1.4.2 $1 \checkmark 2 \checkmark 8^{\checkmark}$
(Mark first THREE only)
1.5 1.5.1 $3 \checkmark$
1.5.2 ATG \checkmark
1.5.3 It determines the codes \checkmark for the sequence of amino acids \checkmark which determines the type of protein \checkmark
max
1.5.4 (a) AUG \checkmark
(b) - tRNA picks up specific amino acids \checkmark

- its anticodon \checkmark matches up with the codon of mRNA
- therefore the amino acids are arranged in a particular sequence \checkmark
- to form particular polypeptides $\checkmark /$ proteins (If any examples of anticodons and codons are given, consult the Senior Marker)
any
1.6 1.6.1 $36.7 \checkmark^{\circ} \mathrm{C} \checkmark$
1.6.2 $0.3 \checkmark$
1.6.3 The woman is fertile from day $12 \checkmark / 14 /$ /ovulation occurs because the temperature \checkmark rises \checkmark
1.7.1 Accept any ONE value between 13.5 to14 \checkmark years
1.7.2 Most girls \checkmark reach puberty before \checkmark boys/

Boys \checkmark reach puberty after \checkmark girls

OR

Most girls reach puberty at age $12-13 \checkmark$ years and boys at age $14-15 \checkmark$ years/ Most boys reach puberty at age $14-15 \checkmark$ years and girls at age $12-13 \checkmark$ years
1.7.3 Some girls \checkmark reach puberty at a later stage \checkmark

OR

Not all girls \checkmark of 16 have reached puberty $\checkmark /$ any correct physiological reason e.g. hormonal imbalance, diet, strenuous training programme
1.7.4 - Emotionally immature \checkmark not easy to change from being a teenager to a parent \checkmark /not responsible yet

- Not yet financially independent \checkmark and the costs \checkmark /medical/clothes/food of raising a baby is high
- Need education \checkmark /qualifications to get a good job \checkmark
- To raise a baby needs time \checkmark leffort and no freedom \checkmark for the teenager/cannot keep baby
- Teenager’s body not physically ready \checkmark and pregnancy may lead to complications \checkmark
- Girls will be stigmatised \checkmark and chances of finding a partner are reduced \checkmark
(Do not accept STD's in answer) any 2×2
(Mark first TWO only)

SECTION B

QUESTION 2

2.1 2.1.1 $\quad \mathrm{C}$ - spindle threads $\checkmark /$ spindle fibres

D - homologous chromosomes $\checkmark /$ bivalent/tetrad/homologues
2.1.2 (a) Metaphase $1 \checkmark$
(b) Chromosomes are aligned at the equator \checkmark in homologous pairs $\checkmark /$ bivalent/tetrad/homologues

2.1.3 Crossing over \checkmark

$\begin{array}{ll}\text { 2.1.4 } & \text { Homologous chromosomes/bivalent/tetrad line up } \checkmark \text { at the equator } \\ \text { Chromatids from homologous chromosomes overlap } \checkmark / \text { cross }\end{array}$
2.1.5 Promotes genetic variation \checkmark in the gametes/offspring will be different from the parents
2.1.6 (a) $2 \checkmark$
(b) $2 \checkmark$
2.2 2.2.1 The gene for curly hair is dominant \checkmark and the dominant condition shows up \checkmark in either the homozygous or heterozygous condition
2.2.2
$\begin{array}{ll}\mathbf{P}_{1} & \begin{array}{l}\text { Phenotype } \\ \text { Genotype }\end{array}\end{array}$
Man

Meiosis
Curly hair
Hh
Woman
Curly hair \checkmark

Gametes/G
Fertilisation
$F_{1} \quad$ Genotype

1 mark for correct gametes 1 mark for correct genotypes

Phenotype

1 mark for stating P_{1} and F_{1}
1 mark for stating meiosis and fertilisation
If another letter is used, candidates will lose marks for $\boldsymbol{P}_{\mathbf{1}}$ F_{1} genotypes any

2.3

DNA	RNA
1. Double \checkmark stranded molecule/ paired bases	Single \checkmark stranded molecule/ unpaired bases
2. Contains deoxyribose \checkmark sugar	Contains ribose \checkmark sugar
3. Contains the nitrogenous base thymine \checkmark	Contains the nitrogenous base uracil \checkmark
4. A is proportional to T and G is proportional to C \checkmark	Different relative numbers of A, T, C, G \checkmark
5. Longer \checkmark	Shorter \checkmark
6. Helix shape \checkmark	No Helix \checkmark

(Mark first THREE only)

Any 3×2
+1 for presenting a table
2.4 2.4.1 Test tube $2 \checkmark$
2.4.2 Percentage of A does not equal T and percentage of C does not equal $G \checkmark$ in test tube 2 therefore no base pairing \checkmark

OR

The percentages of A is equal to T and C is equal to $G \checkmark$ in test tube 1 therefore base pairing \checkmark

Therefore test tube 2 contains the single stranded virus DNA molecule

QUESTION 3

3.1

3.1.1

C - Endometrium $\checkmark /$ placenta/uterus/uterine wall/myometrium
D - Ovary \checkmark
3.1.2 1-Ovulation \checkmark

2-Fertilisation \checkmark
3 - Mitosis $\checkmark /$ cell division/growth/cleavage
3.1.3
(a) $23 \checkmark$
(b) $46 \checkmark / 23$ pairs

3.1.4

Caption: 1 mark
Label: any 4 correct labels: 4 marks
3.1.6 (a) Oxygen \checkmark
(Dissolved) food \checkmark (examples e.g. glucose, amino acids, water) Antibodies \checkmark
(Mark first ONE only) any
(b) Metabolic waste \checkmark

Carbon dioxide \checkmark
Nitrogenous waste/(examples e.g. urea, ammonia, uric acid)
Water \checkmark
any
(Mark first ONE only)
Non-identical $\checkmark / f r a t e r n a l / d i z y g o t i c ~ t w i n s ~$
3.2 are produced when(two egg cells) \checkmark are (fertilised by two sperms) ${ }^{\checkmark}$

Identical $\checkmark /$ monozygotic twins/(Siamese/conjoined)
are formed when (one sperm) \checkmark fuses with (one egg cell) \checkmark to form a zygote which then splits up into two (incomplete split)

1.6 (a)	Oxygen \checkmark (Dissolved) food \checkmark (examples e.g. glucose, amino acids, water) Antibodies \checkmark (Mark first ONE only)
(b)	Metabolic waste \checkmark
	Carbon dioxide \checkmark
	Nitrogenous waste/(examples e.g. urea, ammonia, uric acid)
	Water \checkmark any
	(Mark first ONE only)

3.3
 3.3.1 $18 \checkmark$

3.3.2 Honey bees \checkmark
3.3.3 Very little nectar $\checkmark / f o o d$ available/bats go off to sleep/nocturnal
3.3.4 Attracts pollinators $\checkmark /$ for pollination
$\begin{array}{ll}\text { 3.3.5 } & \begin{array}{l}\text { Pollination occurs over more days } \checkmark \text { ensures that most flowers } \checkmark \\ \text { get pollinated/increases the chances of pollination/not to } \\ \text { attract too many pollinators at once to prevent damage to the } \\ \text { flowers }\end{array}\end{array}$
3.3.6 (a) Seed \checkmark
(b) Fruit \checkmark

SECTION C

QUESTION 4

4.1
4.1.1

Female \checkmark
(1)

4.1.3 Down's \checkmark Syndrome/trisomy 21
4.1.4 Carries $3 \checkmark$ lextra chromosome(s) on number $21 \checkmark$ OR
$47 \checkmark$ chromosomes (allocate 1 mark)
4.2.1
$24: 8 \checkmark($ accept different correct working $)=3: 1 \checkmark$
4.2.2 To increase the reliability of theresults $\checkmark \checkmark$ OR
Reduces chances of errors $\checkmark \checkmark$
any
(2)
4.2.3

NOTE:

If the wrong type of graph is drawn:

- Marks are forfeited for 'correct type of graph' ; 'drawing of graph'

If graphs are not drawn on the same system of axes:

- Mark the first graph only using the given criteria -

Candidates will lose 2 marks for the incorrect drawing of the pair of bars

Mark allocation of the graph

Correct type of graph (T)	1
Caption for graph	1
Correct label for X-axis	1
Graphs labelled/key provided for 2 graphs	1
Correct label for Y-axis	1
Appropriate scale for Y-axis	1
Drawing of bars (D)	1 mark if 1 pair of bars plotted correctly 2 marks if 2 to 3 pairs of bars plotted correctly 3 marks if all 4 pairs of bars are plotted correctly

4.3 4.3.1 Communicate to learners/parents/school/education department about purpose, procedures and safety \checkmark
Permission from education department $\checkmark /$ parent/learner/school
Determine what sample size is appropriate \checkmark
Random sample must be taken (not gender and age)
Arrange all logistics such as:

- necessary equipment \checkmark
- venuer
- trained personnel \checkmark /coordinator at school
- budget available \checkmark
- storage needed \checkmark
- transport of equipment \checkmark
- Inform school of the day and time \checkmark that the research will take place
- draw up a table $\checkmark /$ recording sheet to record information

Ensure confidentiality \checkmark
any
(Accept any correct answer with PLANNING before drawing blood)
(Mark first FOUR only)
4.3.2 Personnel should wear gloves \checkmark

Sterilise the learner's arm \checkmark /finger
Use new/sterile syringes \checkmark /lancets/cotton wool etc. for every
learner tested
Apply pressure to stop bleeding \checkmark
Monitor learners while and after drawing blood \checkmark
Avoid injury to learners $\checkmark /$ draw blood from vein not artery
Safe disposal of waste \checkmark
(Mark first THREE only) any

4.4 Possible answer

Stem cells are (actively) dividing \checkmark cells that are not yet differentiated $\checkmark /$ not yet mature could give rise to different types of cells

Source: Embryo $\sqrt{ }$
Blood in umbilical cord $\checkmark /$ cord blood
Placentar
Bone marrow \checkmark any
(Mark first TWO only)

- Arguments for use of stem cells
- Provide replacements for tissues \checkmark^{S} /organs damaged by age \checkmark^{R} /trauma/disease/improve quality of life
- Used for research $\checkmark^{\text {S }}$ to see whether it can cure different diseases \checkmark^{R} e.g. cancer/more reliable results when human stem cells are used
- Stem cells from e.g. the blood from the umbilical cord can be stored \checkmark^{S} when needed in future because it would not be rejected \checkmark^{R} by the body's immune system any 2×2 (Mark first TWO only)
- Arguments against use of stem cells
- Expensive \checkmark^{S} research money could be used for other needs \checkmark^{R}
- Only rich people $\checkmark^{\text {S }}$ lexpensive can afford to store \vee^{R} stem cells for later use
- Interfere with religion $\checkmark^{S} /$ culture/creation because it is immoral \checkmark^{R} /unethical/we cannot play God
- Moral \checkmark^{S} lethical objection because we are destroying a human life \checkmark^{R}
- The dangers $\checkmark^{\text {S }}$ of using stem cells are unknown and may be a risk \vee^{R}
- Can lead to illegal trade $\checkmark^{\text {s }}$ in embryos /the placentas of new-born babies/ to make money $\checkmark^{\text {R }}$
- Embryos conceived and then aborted \checkmark^{s} /abandoned/ to use \checkmark^{R} the stem cells from the placenta
any 2×2
\qquad

