education

Department:
Education

REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

This memorandum consists of 11 pages.

SECTION A

QUESTION 1

1.1

1.1.1 A $\checkmark \checkmark$
1.1.2 $C \checkmark \checkmark$
1.1.3 B $\checkmark \checkmark$
1.1.4 $\mathrm{D} \checkmark \checkmark$
1.1.5 $\subset \checkmark \checkmark$ (5×2)
(10)

1.2

1.2.1 Pollutants \checkmark
1.2.2 Eutrophication \checkmark
1.2.3 Variation \checkmark
1.2.4 Fossils
1.2.5 Vestigial structures \checkmark
1.2.6 Phylogenetic tree \checkmark /cladogram/phylogeny
1.2.7 Mutation \checkmark
1.2.8 Crossing over $\checkmark \quad(8 \times 1)$

1.3

1.3.1 Both A and $B \checkmark \checkmark I A$ and B
1.3.2 A only $\checkmark \checkmark / A$
1.3.3 A only $\checkmark \checkmark / A$
1.3.4 B only $\checkmark \checkmark / B$
1.3.5 B only $\checkmark \checkmark / B$
1.3.6 B only $\checkmark \checkmark / B$
1.3.7 Both A and $B \checkmark \checkmark / A$ and $B \quad(7 \times 2)$

14
1.4.1 $5 \checkmark$ mya \checkmark
1.4.2 Chimpanzee \checkmark
1.4.3 98,6 \vee \% \checkmark
1.5
1.5.1 Paleozoic Era \checkmark(1)
1.5.2 (a) Paleozoic Era \checkmark(1)(b) Permian \checkmark
(1)
1.5.3 Cenozoic \checkmark(1)
1.5.4 (a) $65 \checkmark$ mya(1)(b) Comet $\checkmark /$ star/meteorite/asteroid(1)
(c) Extraterrestrial object hit the earth Climate change occurred - due to dust clouds \checkmark Sunlight was blocked \checkmark Ice age occurred \checkmark
Reduction of CO_{2} in the atmosphere \checkmark
Photosynthesis decreased \checkmark
Many plants died \checkmark
Many animals died $\checkmark /$ dinosaurs become extinct
max. (4)
1.5.5 Uranium \checkmark will be used, because dinosaurs lived approximately 65 million years ago and C^{14} can only measure up to $5730 \checkmark$ years ago

SECTION B

QUESTION 2

2.1 - There was variation \checkmark with regard to the feet within the ancestral duck populations

- Some ancestral ducks had skin \checkmark attached between the toes
- As food became scarce \checkmark /environment changed
- Competition for food increased \checkmark
- Those ducks which had skin attached between their toes $\checkmark /$ desired characteristic could swim better
- To secure food and survived \checkmark
- Those ducks that did not have skin attached between their toes were unable to swim well \checkmark
- Did not secure food and died \checkmark
- Through natural selection entire populations \checkmark of ducks with webbed feet evolved

2.2

2.2.1 If you use organs/structures repeatedly \checkmark it develops $\checkmark /$
and organs and structures that are not used \checkmark, disappear \checkmark
Acquired \checkmark characteristics are inherited \checkmark
2.2.2 Acquired characteristics \checkmark are not inherited $\checkmark /$ only characteristics that are controlled by the genes \checkmark are inherited \checkmark

2.3

2.3.1 People need firewood \checkmark for cooking and staying warm
2.3.2 - Land is not deforested \checkmark because the need for firewood would be less so soil is not eroded \checkmark

- $\mathrm{CO}_{2} / \mathrm{O}_{2}$ balance \checkmark is not upset \checkmark
- People/women do not need to spend time \checkmark to collect firewood for fuel \checkmark
- Poor people can't afford \checkmark the more expensive types of fuels such as gas, so they make use of waste of banana plants to produce their own fuel \checkmark
- Burning organic matter from the banana plant produces less pollution \checkmark than burning fossil fuels \checkmark which give off e.g. SO_{2}
- Making fuel bricks out of organic waste \checkmark creates jobs to reduce poverty \checkmark recycle waste

(Mark first THREE only)

2.3.3 To ensure that they do not create other problems such as more pollution/toxic gases \checkmark
To ensure that it is cost-effective \checkmark
To ensure that it is a sustainable venture \checkmark
To ensure that there are no unexpected negative effects \checkmark any (2)
(Mark first TWO only)
2.4
2.4.1 High sewage level \checkmark makes bacteria reproduce rapidly/anaerobic bacteria flourish in sewage
2.4.2 The concentration of dissolved oxygen decreased \checkmark after the the point of entry up to $300 \mathrm{~m} \checkmark$ downstream and then increases \checkmark further downstream
2.4.3 Initially the bacteria population increases \checkmark resulting in a decrease of the oxygen level \checkmark close to the point of entry of sewage Eutrophication \checkmark took place downstream the number of algae increased \checkmark which releases more oxygen \checkmark during photosynthesis Therefore water became re-oxygenated \checkmark
2.4.4 Proper sanitation \checkmark
Sewage must be purified before it enters the river \checkmark
Education \checkmark to make people aware of proper waste disposal measures Research \checkmark - more efficient ways of treating sewage (Mark first TWO only) any

QUESTION 3

3.1

3.1.1 Pain \checkmark

Complications with pregnancies \checkmark
Heal sores \checkmark
Skin problems \checkmark
any
(Mark first TWO only)
3.1.2 If the number of devil's claw plants is reduced, the smaller animals herbivores that eat it will decrease in numbers \checkmark,
The carnivores that rely on the herbivores will also decrease in number \checkmark
The energy flow through the habitat will be reduced/changed \checkmark
3.1.3 By establishing nurseries \checkmark to grow the plants

Legislation on the amounts to be harvested \checkmark
Monitoring $\checkmark /$ policing the harvesting
Collecting only the amount one requires \checkmark
Re-planting the main root after the secondary tubers have been removed \checkmark
Educating \checkmark collectors on sustainable harvesting methods any
(Mark first TWO only)
3.1.4 The Khoisan people were the first \checkmark to use devil's claw for medicinal purposes
Pharmaceutical companies must acknowledge and compensate the Khoisan people for their indigenous knowledge \checkmark lintellectual property

3.2

3.2.1 Speciation \checkmark
3.2.2 The population of species A has split up into two

The sea forms a physical barrier \checkmark and each group adapts to the new environmental factors \checkmark Each group undergoes natural selection independently \checkmark and develops separately Each group may become genotypically \checkmark and phenotypically different \checkmark Might prevent them from interbreeding \checkmark when they come into contact again/become reproductively isolated leading to the formation of a new species

3.3

3.3.1

Rubric for the mark allocation of the graph

Correct type of graph	1
Caption of graph	1
Correct label for X-axis including unit	1
Correct label for Y-axis including unit	1
Key provided for 2 graphs	1
Appropriate scale for X-axis	1
Appropriate scale for Y-axis	11 Drawing of graphs 2
All points joined for graph A to 11 points plotted correctly and graph B	

NOTE:

If the wrong type of graph is drawn:

- marks will be lost for "correct type of graph"
- marks will be lost for joining of points

If graphs are not drawn on the same system of axes:

- mark the first graph only using the given criteria

If axes are transposed:

- marks will be lost only for labelling of X -axis and Y -axis
3.3.2 $12 \checkmark \mathrm{~kg} /$ hectare \checkmark
3.3.3 It's wasteful $\checkmark /$ costly Increased run-off of phosphate into rivers/dams/ponds/lakes/sea \checkmark / eutrophication/pollution
(Mark first TWO only)

SECTION C

QUESTION 4

4.1

4.1.1 An increase/decrease in the concentration of sodium disulphate \checkmark will result in an increase/decrease in the percentage germination \checkmark of oats seeds

OR

An increase/decrease in the concentration of sodium disulphate \checkmark Will have no effect on the percentage germination of oats seeds \checkmark
4.1.2 Concentration of sodium disulphate(IV) \checkmark

4.1.3 Temperature \checkmark
 Water \checkmark

(Mark first TWO only)
4.1.4 Average estimate \checkmark increases reliability \checkmark
4.1.5 $12+13+14+11+12 \checkmark / 62 / 100$

$$
\begin{equation*}
=62 \% \checkmark \tag{2}
\end{equation*}
$$

4.1.6 When oats seeds were germinated in $0,00 \%$ concentration of sodium disulphate germination percentage was high \checkmark compared to when germinated in 2,50\% concentration of sodium disulphate \checkmark
4.1.7 Increasing concentrations of sodium disulphate \checkmark decreased the germination of oats seeds \checkmark After 2.50% no seeds germinated \checkmark

4.2

4.2.1

4.2.2 Little foot \checkmarkMrs Ples \checkmarkTaung child \checkmark(3)
(Mark first THREE only)
4.2.3 Foramen magnum of the australopithecine was towardsthe centre \checkmark indicating that these were the first bipedal hominids \checkmarkon Earth
ORLarge jaws \checkmark indicate a mainly vegetarian diet \checkmark(2)

4.3 Possible answer

Consequences of over fishing to humans and the environment
Species can become extinct \checkmark
Loss of biodiversity \checkmark
Fish start to decline \checkmark
Decrease in products using fish \checkmark
People will lose their jobs \checkmark
Shortage of food $\checkmark /$ leading to starvation
Reduced opportunities for ecotourism \checkmark
Upset the balance of ecosystems $\checkmark /$ Food chains/webs can be destroyed (Mark first FOUR only) any
(4)
Management strategies to prevent overexploitationLimit the size of fish caught \checkmark only catch those that have alreadyreproduced \checkmarkLimit the number/quotas of fish caught \checkmark to prevent the populationfrom decreasing rapidly \checkmark
Limit the fishing area \checkmark to protect some areas so that the populationdoes not die out \checkmarkLimited fishing /minimal or no fishing \checkmark during breeding season \checkmark
License to fish \checkmark to be able to monitor \checkmark
Develop legislation \checkmark to regulate fishing $\checkmark /$ heavy penalties forflouting the legislation
Scientific research \checkmark to inform legislation \checkmark
Education and awareness \checkmark of role fish play in the ecosystem $\checkmark /$
endangered species
Encourage mariculture \checkmark for food/prevent extinction \checkmark
Discouraging illegal market \checkmark by government selling it at lower price $\checkmark /$subsidy(Mark first FOUR only)

ASSESSING THE PRESENTATION OF THE ESSAY

MARKS	DESCRIPTIONS
$\mathbf{3}$	Well-structured - demonstrates insight and understanding of question All FOUR management strategies linked to consequences
$\mathbf{2}$	Minor gaps in the logic and flow of the answer TWO to THREE management strategies linked to consequences
$\mathbf{1}$	Attempted but with significant gaps in the logic and flow of the answer Only ONE management strategy linked to consequences/no link to consequences
$\mathbf{0}$	Not attempted/nothing written other than question number

